
Tracking the Latitude and Longitude of Boats in a Video Feed

Blair Johnson

December 12, 2020

1 Introduction

The primary objective of this project is to create a system that meets the requirements of the US Navy AI
Tracks at Sea challenge. The challenge asks competitors to create a system that can generate the longitude
and latitude trajectories associated with boats in a camera feed. The competition provided 17 three-minute
videos, a log of estimated frame times for each video, and a log containing timestamped GPS coordinates
for the boat in the videos. Each video was taken in the same location using the same boat and camera on
the same day. The location of the camera was provided, but not its orientation.

2 Gathering Background

Several key points of information were conspicuously missing from the information provided by the compe-
tition coordinators. First, the orientation of the camera used to record the videos was not provided. This
would be essential information for any optical tracking system. Second, no information that would be useful
for traditional CV approaches was provided. Competitors were left to design a solution without precise
data on the camera’s focal length or field of view. Thus, information about the camera’s orientation and
configuration had to be derived from the information that was provided.

2.a Orientation

In order to determine the orientation of the camera in the world frame, the area around its known position
was explored using Google Earth. Prominent landmarks in the video, such as an airplane hanger on the
far right hand side of the frame and a large white building in the center of the frame were identified using
Google Earth, and their positions were noted. Using the coordinates of these locations, the camera’s global
orientation was defined as the vector projecting from the camera along the right hand side of its field of
view. The camera’s position and orientation were then used to define the 2D homogeneous transformation
matrix1 (1) from the world frame to the camera frame.

ζco =

cosθ −sinθ ~tlon
sinθ cosθ ~tlat

0 0 1

 , θ = ∠~rRHS = −0.373448408973746 rad (1)

2.b Camera Parameters

With no obvious right angles or parallel lines in the frame, determining the camera’s focal length would
prove extremely difficult. This eliminated many traditional computer vision methods that would provide
exact solutions to the world frame tracking problem from consideration. This left two main options for
consideration: approximate heuristic-based solutions, and deep learning solutions. With the limited quantity
and quality of data, simpler heuristic solutions were desirable. This class of solutions would create simple
mappings from bounding box data to real world positions and would rely on the horizontal field of view of

1As the camera resolution was 720p, the system will only be able to resolve boats on a small local scale. This will allow the
use of 2D Cartesian coordinates as an approximate for surface longitude and latitude.

1

the camera to create these mappings. Unfortunately, there were no readily identifiable landmarks on the left
hand side of the videos. Instead, a pin was dropped in Google Earth at the location that most resembled
the left hand side of the frame. From this vector, the approximate field of view was calculated to be 86°.

Figure 1: Google Earth project with annotations for camera, right landmark, center landmark, and estimated
left hand side position.

3 Labeling and Preparing Data

The first step completed in this project was hand-labeling bounding boxes around the target vessel in each
of the videos provided. MATLAB’s video labeling tool was used to interpolate hand drawn bounding boxes
between frames. The outputs of this hand labeling emulate the outputs of the object detection model that
would be used to detect vessels within the frame. A script was written to parse the bounding box objects
that MATLAB’s video labeling tool outputs and save their attributes to CSV files.

Figure 2: A bounding box rendered around the target vessel.

The next task was to combine the camera and vessel data sources into a single log of times, frames,
and locations. This presented two major challenges. The first was the quality and resolution of the data.
Both the GPS and frame logs contained timestamps that were only accurate to the second. The camera
frame log also contained missing timestamps for the first several seconds of each video. The second challenge
was the irregularity of the data. The webcam used in data collection operated with a variable frame rate
making it difficult to interpolate between timestamps. The GPS on-board the vessel also collected data at
very irregular intervals and at a much lower average rate than the camera. This meant that combining these
two data sources would require estimation of the true timestamps to the fraction of a second, as well as
correlation of the irregular GPS locations with the video frames.

2

4 Cleaning and Correlating Data

A script was written to ingest the GPS, camera, and bounding box label data for each video and save a
pickle file containing a master record of every frame, the time it was taken, the approximate location of the
vessel at that time, and on-screen location, height, and width of the vessel.

4.a Assigning Timestamps

A simple interpolation method was used to assign approximate timestamps to each frame and GPS data point.
For every second within each video, an estimated frame rate was generated based on the frequency of identical
timestamps. Using this approximate frame rate, repeated timestamps were evenly interpolated within the
second in which they were captured. GPS coordinates captured within the same second were interpolated
evenly in a similar fashion. The missing timestamps at the beginning of each video were predicted by
projecting backwards from the first labeled timestamp using the approximate frame rate estimated at that
location.

4.b Correlating Data

In order to identify the relationship between camera data and world frame position, each GPS position
within a video run time must be matched to its associated on-screen location. In order to do this, a
function compared the GPS timestamps generated within the run-time of each video with that video’s frame
timestamps. Each GPS coordinate was assigned to the frame that was captured closest to it in time. As
frames were captured more frequently than GPS data, the majority of frames had no associated coordinates.
At this time, bounding box labels were read and joined to the DataFrame containing the correlated data
along the frame index.

5 Positional Regression

With screen and world positions correlated in a single dataset, it was finally possible to begin designing a
system that could translate between the two.

5.a Linear Model

The most promising approach explored was the linear model. In this approach, the camera’s field of view
was represented in a 2D polar coordinate frame. In this frame, every GPS location was represented by an
angular rotation from the right hand side of the field of view and a linear translation away from the camera.
Taking advantage of two simple relationships, these angle and distance parameters could easily be estimated
from a bounding box. First, there was an approximate linear relationship between the on-screen x coordinate
as a proportion of the horizontal resolution, and the angle of the corresponding position. The constant of
proportionality in this case is the field of view, and this relationship is represented in (2). There was also
determined to be an inverse relationship between the on-screen height of the boat and its distance from the
camera, represented in (3).

∠~rcb ∝
1− xb
1280

(2)∣∣∣~rcb∣∣∣ ∝ 1

hb
(3)

In order to find these proportionality constants, the correlated dataset was filtered to remove frames which
did not have a corresponding GPS position, and then linear searches were used to solve the minimization

3

problem in (4).

minimize
f ∈ R, α ∈ R

N∑
n=0

∥∥∥ ~rbon − ζcoT ~rbcn

∥∥∥2 (4a)

subject to 0 ≤ f ≤ π

2
, (4b)

0.00001 ≤ α ≤ 0.00005 (4c)

Since the boat’s distance from the camera and angle from the camera’s orientation were independent and
could be derived from the boat and camera locations, (4) was broken into two separate minimization
problems. The constrained domain of each parameter was searched to arrive at the optimal values of
f = 1.2008, α = 0.000021 which minimized the error in predicting angle and distance2. Examining the
resulting predictions in Figures 3 and 4, the angle estimator appears to be highly effective, whereas the
distance estimator exhibits a ”jitter” which hurts its performance as an estimator.

Figure 3: True vs estimated theta values.

Figure 4: True vs estimated distance values.

Several different methods of filtering will be evaluated as potential solutions for the error in the distance

2Towards the end of the dataset, the boat traveled beyond the resolution limitations of the camera. These samples were
excluded from the cost function evaluation as they provided no usable boat height data.

4

estimator. The final3 equation relating bounding box data to world frame position is (5).

~rob = ζco
T

[
α

hb
cos

(
f(1− (xb + 0.5wb))

1280

)
,
α

hb
sin

(
f(1− (xb + 0.5wb))

1280

)
, 1

]T
(5)

5.b DNN Regression

Another method for positional regression that was briefly explored was a deep learning based approach.
A small deep neural network was constructed with six layers of 16 nodes, followed by an output layer of
two nodes. Linear activation functions were used throughout the network. On-screen x and y positions, as
well as relative longitude and latitude positions were normalized, and a 20% validation set was withheld.
The model was trained without dropout for 50 epochs on the remaining data with a MSE loss and Adam
optimizer. Comparing the trajectories generated by the model, and the true validation trajectories, two
main observations were made. First, the model seemed to do a good job of capturing the proper shape of the
boat trajectory. Second, the model failed to project its predicted longitude and latitude coordinates into the
proper scale. Results were several orders of magnitude larger than the desired values, and required manual
re-scaling to be comparable. This method showed some promise, but no more investigation was done as the
linear method proved far more reliable.

6 Filtering Regression Results

Although the linear method of positional projection worked well, there was still significant error present in
the distance estimation results. Several filtering methods were explored to combat this error.

6.a Moving Average Filtering

The first method that was used to improve results was the moving average filter. A linear search was
performed over the range of possible window lengths and found 367 to be the value that minimized the
squared error function.

Figure 5: The characteristic convex loss curve of the squared L2 norm.

This method showed clear improvements in the quality of distance prediction. Figure 6 shows the
improved distance estimation results.

3Note that xb is the x coordinate of the left hand side of the bounding box, and a 0.5wb (width of bounding box) term has
been added to obtain the x coordinate of the center of the bounding box. hb is the height of the bounding box.

5

Figure 6: Results of linear distance estimation after moving average filtering with window length 367.

6.b FFT Filtering

An additional method that was explored to improve distance estimation was the use of a lowpass filter via the
Fast Fourier Transform. Another linear search was performed to determine the number of terms of the DFT
to truncate before reconstruction in order to minimize reconstruction error. It was found that reconstruction
from the first 50 terms of the DFT was optimal, but in Figure 7 it is evident that this results in a poorer
approximation of the true signal than the moving average method produced.

Figure 7: Result of linear distance estimation reconstructed from the first 50 terms of its DFT.

6.c Kalman Filtering

The final method that was explored involved operating on the predicted trajectories produced by the linear
model. The Kalman filter seeks to model the approximate system dynamics of the hidden state vector and
uses this a priori knowledge to improve a streaming estimate as it receives new observations. The full scope
of the Kalman filter’s capabilities was not explored, but early work produced a configuration that showed
promise in improving the quality of path predictions. Algorithm 1 describes the third order Kalman filter
algorithm used. The chosen dynamics model assumes constant acceleration over short timescales, and it
clips acceleration values that surpass the highest values found in the training dataset. Initial values for the
Pk, the process covariance matrix, were chosen based on reasonable error tolerances in the linear position
estimate. These values were estimated in meters, and as such, this implementation of the Kalman filter
requires that latitude and longitude values be converted into circumferential meters before ingestion. This
conversion will vary with latitude, but it is approximately affine when far away from the poles.

6

Algorithm 1: The Kalman Filter

initialize:
x̂0 = [y00, y01, 1, 1, 0.1, 0.1]
H = I6x6
δ = [21, 21, 5.2, 4.7, 1.2, 1.2]
P0 = δT δ
R = 1.1 ∗ P
αmax = 15

F0 =

1 0 dt0 0 1

2dt
2
0 0

0 1 0 dt0 0 1
2dt

2
0

0 0 1 0 dt0 0
0 0 0 1 0 dt0
0 0 0 0 1 0
0 0 0 0 0 1

Q =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5 0
0 0 0 0 0 5

for k = 1,2..., dtk do

x̂k|k−1 = Fkx̂k−1
Pk = FkPk−1F

T
k

K = PkH
T

HPkHT+R

Pk = (I −KH)Pk

if yk then
x̂k = x̂k|k−1 +K(yk −Hx̂k|k−1)

end
if αmax ≤ |x̂k4:| then

clip: −αmax ≤ x̂k4: ≤ αmax

end

end

Another important note about this implementation of the Kalman filter is that it requires observation of
the entire state vector. This means that each yk must contain data about position, velocity, and acceleration
in two dimensions. In order to generate these values, both the first and second order discrete derivatives
were taken from the observed position vector produced by the linear model. This shouldn’t be necessary,
but quality results were difficult to obtain without this added information. In theory, the Kalman filter
should also be able to generate reasonable position estimates even if no measurements are fed into it. This
is important, because the object detection algorithm generating bounding box data from a video cannot be
relied upon to identify the boat in every frame. This is especially an issue given the low resolution of the
camera in use. If the boat travels too far away from the camera, the algorithm will be unable to resolve
its position. In practice, experiments with using the Kalman filter to predict the boat’s position in missing
frames have been largely unsuccessful. The filter has a tendency to make extremely aggressive predictions
about the boat’s behavior, launching it off in random directions and producing a very ”jagged” trajectory.
These issues suggest that there are still problems with the current implementation of the Kalman filter, and
further work could improve these results.

7 Analysis and Conclusion

The most successful of the approaches examined for generating world-frame positions from on-screen locations
was the linear model. While experimentation showed that the DNN was capable of projecting screen-space
coordinates to world-frame coordinates, the results were too inexact to easily work with. In addition to

7

being extremely fast and simple to implement, the linear model showed that it could consistently reproduce
approximate trajectories from video data. The linear model also had the added benefit of interpretability,
and derived constants could be verified with real-world measurements. While the linear model proved quite
effective as an initial step, the high volatility of its distance estimates was a major contributor to the overall
system error. Figure 8 depicts an example trajectory, and the raw estimated path produced by the linear
model.

Figure 8: True boat trajectory and the raw trajectory produced by the linear model.

Since the model predicts distance from the height of the bounding box, the resolution in distance is far
lower than the resolution in angular position which is produced from horizontal location within the image.
This is evident when examining Figure 8. The predicted trajectory is dominated by a handful of discrete
distances. This is most noticeable as the boat gets farther away from the camera. As this happens, the height
decrease becomes a greater proportion of the overall height of the bounding box, resulting in increasingly
spaced out discrete distances. Filtering promises to smooth out these distance predictions and provide a more
accurate estimate of the boat’s path. The two most effective filtering methods examined were the moving
average filter and the Kalman filter4. Each of these two filtering techniques exhibits unique characteristics
that make them ideal for different use-cases.

Figure 9: True boat trajectory and the boat trajectory after moving average filtering with a 367 element
window.

The moving average filter did a remarkably good job of producing reasonable vessel trajectories from the

4The FFT lowpass filter removed some of the jitter from the distance estimates, but strayed too far from the true values to
be as useful as the other two filters examined.

8

linear model output. This filtering technique was the most effective technique when doing an error based
assessment. The locations produced by the moving average filter were consistently closer to the true locations
of the vessel than any of the other filtering techniques examined. That being said, the moving average filter
did a poor job of smoothing out the high frequency ”squiggles” that are characteristic of its outputs. Despite
being accurate, these paths are unrealistic for an actual boat to follow and would require many tight turns
that the actual vessel does not make. This is where the Kalman filter excels.

Figure 10: True boat trajectory and the boat trajectory after the Kalman filter was applied.

While the Kalman filter produced vessel trajectories that were consistently farther from the true tra-
jectories than the moving average filter, it did a very good job of producing realistic trajectories from the
volatile inputs that it received from the linear model. The trajectories that the Kalman filter produced rarely
contained maneuvers that would be difficult or impossible for a boat to take and overall they represented
a qualitatively better estimate of the vessel’s path. Additionally, early experiments suggest that Kalman
filtering of the moving average filter outputs can further improve the visual consistency of the results. These
results suggest that the system could be tuned to the desired use-case of a user. Should an application value
minimization of tracking error, then just a moving average filter is necessary. If an application is user-facing
and values realistic and ”pretty” predictions, then the Kalman filter can make tracking more presentable
and realistic.

9

